Acta Crystallographica Section A

Foundations of Crystallography

ISSN 0108-7673

Received 27 January 2004
Accepted 2 March 2004

A theorem on the fullerenes with no adjacent pentagons

Yury L. Voytekhovsky ${ }^{\text {a,b* }}$ and Dmitry G. Stepenshchikov ${ }^{\text {b }}$

${ }^{\text {a }}$ Laboratory for Mineralogy, Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia, and ${ }^{\text {b }}$ Laboratory for Mathematical Investigations in Crystallography, Mineralogy and Petrography, High Technologies Centre, Kola Branch of Petrozavodsk State University, 14 Fersman Street, 184209 Apatity, Russia. Correspondence e-mail: voyt@geoksc.apatity.ru

The theorem that a fullerene C_{n} with any even $n \geq 70$ and no adjacent pentagons exists is proved.
© 2004 International Union of Crystallography
Printed in Great Britain - all rights reserved

As n is even, it follows from the latter that we need precisely N initial fullerenes and an appropriate series to fill the gaps.

3. Lemma and corollary

Let us consider any closed contour built from the edges of a fullerene (Fig. 3). The question is how many pentagons and hexagons do we need to fill it up if only three edges meet at each vertex? In accordance with the following lemma, a contour significantly affects the result:

Lemma. Let $e_{\text {in }}$ and $e_{\text {out }}$ be the numbers of edges touching a contour from inside and outside, respectively. Then, the number f_{5} of pentagons inside a contour equals $6+e_{\text {in }}-e_{\text {out }}$, regardless of the number f_{6} of hexagons.
(Do not take f_{5} for the total number of pentagons of a fullerene, which is known to equal 12.)

To prove this, let us consider the filling of a contour as a planar graph with the total numbers f of facets, v of vertices and e of edges, respectively, where

$$
\begin{aligned}
f & =f_{5}+f_{6} \\
3 v & =5 f_{5}+6 f_{6}+\left(e_{\text {in }}+2 e_{\mathrm{out}}\right) \\
2 e & =5 f_{5}+6 f_{6}+\left(e_{\mathrm{in}}+e_{\mathrm{out}}\right)
\end{aligned}
$$

The terms in parentheses correctly account for the contributions of the facets touching a contour. Then, from the Euler equation

Figure 2
A series of fullerenes resulting from $\mathrm{C}_{60}(\overline{3} \overline{5} m)$: $\mathrm{C}_{70}(\overline{10} m 2), \mathrm{C}_{80}(\overline{5} m), \mathrm{C}_{90}(\overline{10} m 2)$, $\mathrm{C}_{100}(\overline{5} m)$.

$$
f+v=e+1,
$$

where 1 is used instead of 2 because we consider the inner facets of a graph only, we immediately obtain

$$
f_{5}=6+e_{\text {in }}-e_{\text {out }}
$$

with no restrictions on f_{6}. The lemma is proved.
Now, let us surround a contour with a corona of hexagons. For its new outer contour, we have

$$
f_{5}=6+e_{\mathrm{in}}^{\prime}-e_{\mathrm{out}}^{\prime} .
$$

But, $e_{\text {in }}^{\prime}=e_{\text {out }}$. Hence

$$
e_{\text {out }}^{\prime}=e_{\text {out }}+\left(6-f_{5}\right) .
$$

That is, the following corollary is obtained:
Corollary. The number of facets in the sequential coronas will increase if $f_{5}<6$, decrease if $f_{5}>6$, or be the same if $f_{5}=6$.

Figure 3
A contour with outer and inner edges.

The latter case leads to the series of elongated fullerenes named tubulenes (Fig. 2).

4. Theorem

Fig. 3 shows a special regular 'gear' contour for which $e_{\text {in }}=\mathrm{e}_{\text {out }}=12$. Our next idea is to use it to construct six initial fullerenes, each one from two caps bounded by the same 'gears'. Four conditions let us fill up the 'gears' with pentagons and hexagons (Fig. 4): (i) it follows from the above lemma that $f_{5}=6$, i.e. we use precisely six pentagons; (ii) three edges only meet at each vertex because any fullerene is a simple polyhedron; (iii) there are no adjacent pentagons because we are interested in this type of fullerene only; and (iv) at least one pentagon is at the contour, otherwise we can delete 12 hexagons touching it and obtain a contour of the same type.

The next step is to construct the fullerenes from two caps, avoiding adjacent pentagons. The cases of interest are (the numbers correlate with Fig. 4): $\mathrm{C}_{76}=4+4 ; \mathrm{C}_{78}=4+5$ and $5+8 ; \mathrm{C}_{80}=3+4,4+6,5+5$ and $6+8 ; \mathrm{C}_{82}=3+5$ and $5+6 ; \mathrm{C}_{84}=2+4,2+8,3+3,3+6$ and $6+6 ; \mathrm{C}_{86}=2+5$ and $2+7$. Finally, one can take any set of initial fullerenes $\mathrm{C}_{76}, \ldots, \mathrm{C}_{86}$ from the above list to generate the endless series of tubulenes. This is possible because it follows from the above lemma that $e_{\text {out }}^{\prime}=e_{\text {out }}=12$. As the unique $\mathrm{C}_{70}, \mathrm{C}_{72}$ and C_{74} fullerenes with no adjacent pentagons have already been found, the following theorem is proved:

Theorem. For any even $n \geq 70$, a fullerene C_{n} with no adjacent pentagons exists.

5. Conclusions

The above lemma allows us to test whether any graphite tube can be closed as a tubulene or not. At the same time, the theorem shows the way to classify all the tubulenes C_{n} with respect to the total number n of vertices, and the type and mutual orientation of both caps.

Figure 4
All the ways to fill up the 'gear' with pentagons (black) and hexagons.

short communications

We kindly thank the unknown referee for highly helpful dialogue. This study was supported by the Russian Science Support Foundation.

References

Kroto, H. W. (1987). Nature (London), 329, 529-531.
Schmalz, T. G., Seitz, W. A., Klein, D. J. \& Hite, G. E. (1988). J. Am. Chem. Soc. 110, 1113-1127.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2002). Acta Cryst. A58, 295-298.
Voytekhovsky, Y. L. \& Stepenshchikov, D. G. (2003). Acta Cryst. A59, 283-285

